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Abstract: We present some applications of marked Poisson processes to analyse catalog data of earthquakes. A
compound Poisson process has been used to model cumulative energy release of main shocks in the Balkan region. Also,
a marked Poisson process has been applied to model number of events at different magnitude levels. Another model has
been developed to feature the joint distribution of interoccurrence times and corresponding magnitude differences
between subsequent events. Results point out that marking of the process is a helpful instrument, enabling us to catch

some features of the physical process underlying the data.
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INTRODUCTION

Earthquakes could be regarded as discrete events,
representing some real, not well known tectonic
process. Following that scheme and having in mind the
highly random character of all earthquake parameters,
it is quite natural to consider a sequence of
earthquakes as a stochastic process and more explicitly
as a point stochastic process.

In most cases, when studying earthquake occurrence
as a stochastic process, only times of events are
considered. As they seem to occur randomly in time, the
main aim has most often been to test whether real data
support such an assumption. In the theory of stochastic
processes Poisson processes are models of phenomena,
which exhibit highly random behavior. When only
occurrence times {T; :i=1, 2 ,... ,n} are considered,
simple Poisson process is used as a model of
randomness, to which real data are compared.

It has always been of interest to try to enrich time
models of earthquakes with information about other
event’s parameters i.e. to develop space-time models or
the ones relating occurrence times with a quantity,
representing the size of an event (magnitude, intensity
or energy); or to incorporate in the models some
deviations from the Poisson process. In more recent
years point processes have been used to include in the
models aftershock occurrence (Ogata, 1988).

The aim of this study will be, given a sequence of
seismic events, to search for some relations between
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occurrence times {T; :i=1, 2, ..., n} and some quantity
{W; :i=1, 2, ..., n}, giving information about size of
the events under study. Such relations could then be
incorporated in stochastic modeling of the sequence.
The study will be done for main events mostly ; they
indeed play major part in estimating seismic risk.
More often it is assumed that there is independence
between the time T; of a main event and its size W;,
and also among the values of W;. These will be our
initial assumptions, too.

The aim of our study will be to develop a model
process, implying these assumptions, and to verify
how well it fits the data set.

MARKED POISSON PROCESS MODELS

There is an analog of a counting process for marked
point processes. It is sometimes termed as a mark-
accumulator process and is defined as follows.

Let’s have a Poisson process {N(t) : t = 0} with a
rate A > 0 and suppose that the time T; of each event is
associated to a realization of a random variable Yj,
where {Y, : n > 0} is a family of independent and
identically distributed random variables sharing the
distribution

G(y) =Pr{¥c<y} M)

A second requirement is that they be independent
of {N(t): t =0}, too. Then the stochastic process
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N (t)

Z(t) = ZYk

is said to be a compound Poisson process (Taylor and
Karlin, 1984; Ross, 1980)

If u = E[Y;] and V* = Var[Y,] are the common
mean and variance for Yy, Y, ..., then the moments of
Z(t) are given by:

E[Z()]=Aut ®)

for t=0 2

Var[Z(t)]=A(v? + p?)t 4)

As can be seen from the definition of compound
Poisson process, it implies both assumptions made by
us for main shocks and it could be used as a model
process of random behavior in case a sequence of
occurrence times and size of events is to be analyzed.

In the most general treatment of marked point
processes {N(t) : t = 0} is an inhomogeneous Poisson
process with an intensity function {A(t) : t =0} and the
marks {Y, : n>0} need not form an independent
sequence of random variables. Nor it is required that
the marks be independent of the counting process or the
occurrence time sequence (Snyder and Miller, 1991).

If we restrict ourselves to consider an inhomogene-
ous compound Poisson process with a rate A=A(t), then
formula (3) and (4) would be translated into

E[Z(D]= HJ’/\ (s)ds ®)

Var[Z ()] = (v + /J)Jt'}\(s)ds (6)

following (Snyder and Miller, 1991). The problem of
obtaining a proper model of A=A(t) is difficult enough
itself and for the time being, however, we shall follow
the initial assumptions and refer to a stationary Poisson
process.

If we put our attention on the ways the size of an
earthquake can be represented, we can consider the
following reasoning. A natural way to estimate the size
of an event is by the energy of the propagated elastic
waves. This approach, however, has some restrictions,
firstly in the way the energy is determined from the
instrumentation record of an earthquake and secondly,
in the fact that the dynamic range of energies released is
very broad, which causes some computational
difficulties. It is convenient, however, to consider the
sequence of released energies in the scheme of a
compound Poisson process, as the cumulative energy,
released, is a real physical quantity.
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FIG. 2. Cumulative transformed energy (solid line) and
estimated compound process (dashed line) for the
Balkan catalog with aftershocks excluded, My =5.0
;for energy transformation see formula (8)
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FIG. 3. Cumulative number of events (solid line) and

estimated simple Poisson process (dashed line). for the

Balkan catalog with aftershocks excluded, M =5.0

Another way to express the size of an event is by
the maximum intensity |, at the epicenter. For the
present study, we consider it not very suitable to be
used as a mark of the process.

The most frequent way to represent the strength of
an earthquake is by its magnitude; as it is a logarithmic
function of the released elastic energy (7), the range in
which magnitudes vary is less large and this makes
them more suitable for computational use. In case we
consider a compound Poisson process, however, it is
more reasonable to use energy, because a sum of
magnitudes is a quantity rather faint from a physical
point of view.

In the following we have chosen the energy of an
event as measure of its strength and we have analyzed
the data in the frame of a compound Poisson process.
To calculate the energy given the magnitude we have
used the formula (Gutenberg, 1956; Jarkov, 1983)

IgE, =11.8+1.5M, @)

70
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To reduce, however, the very broad variability
range of the energy released in an earthquake, we have
transformed this quantity through the formula

EV = (Ei B Emin)

i (Emax - Emin)
where Ena and Eni, are respectively the upper and
lower bound of the observed values, and E; is the
energy of the i-th event.

As can be seen comparing Figure 1 and Figure 2,
this parameter reflects the behavior of real energy
enough well and is much more suitable for computational
use at the same time.

; E," 0[01] (8)
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FIG. 4. Map of the area covered by the Balkan catalog.
Dashed area is a seismic zone in Bulgaria, specified in
text. Seismic sequences in that zone have been modeled
by a compound Poisson process and results are being
presented in Figs.5-8.

The approach, described above, will first be tested
on data from the Balkan catalog. At the beginning, the
whole Balkan catalog will be considered with no
aftershocks, so as to exclude already known deviations
from our initial assumptions. The Balkan catalog
contains more than 4000 earthquakes, covering the
period 1900-1970, but with aftershocks excluded, the
number is reduced to about 800. The identification of
such aftershocks has been done in an earlier study
(Gospodinaov, 1990), following the algorithm known as
Knopoff’s window. Results, obtained by Karnik and
Prochazkova (1973), point out that a lower cut-off
limit of My = 5.0 is suitable, beneath which the
catalog suffers certain lack of events.

The Balkan catalog covers quite a large area,
including different seismic zones. Considering the
whole catalog could possibly destroy some peculiarities
of the seismic process in each zone, but, on the other

hand, that will make possible deviations from the
assumptions of randomness even more important.

In Figure 2 we have plotted (dashed line) the
estimated mean of the compound Poisson process

N (t)

Z(t) = Z E" ©)

following formula (2) and the standard deviation used
as confidence interval bounds. We have also plotted the
real cumulative E " process. As can be seen, a great
portion of energy, released at the beginning of the
period, causes an essential difference between the real
process and the compound Poisson process for some
time. Unfortunately, the period covered by the data is
too short and we have only this case of deviation of
the real process from the estimated one, but one of the
possible interpretations of the results could be the
following.
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FIG. 5. Cumulative number of events (solid line) and
estimated Poisson process (dashed line) for the seismic
zone in Bulgaria, specified in Figure 4.
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FIG. 6. Cumulative transformed energy (solid line)
and estimated compound Poisson process (dashed line)
for the seismic zone in Bulgaria, specified in Figure 4.

If we consider the Balkan region to be subjected to
tectonic processes, leading to a constant accumulation
of stress, we may suppose that it reaches some critical
state, which determines random (for the whole region)
release of stress in different seismic zones giving rise
to earthquakes with different energy.

But the release, owing to one or a few very strong
earthquakes, of a very big portion of accumulated stress
can cause considerable departure from the state of
criticality, which reflects in deviation from randomness
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in the earthquake occurrence, too. Then the process of
constant stress accumulation will take some time for the
region to return to the state of criticality and for the
process of energy release to return to randomness. It
could be very interesting to test such an interpretation
on different data sets for longer period of time.

In Figure 3 we have plotted the estimated mean and
corresponding error bounds for a simple Poisson
process. We have also plotted the cumulative number of
events in time. There are some small deviations of the
real process from the Poisson one, but they do not seem
to be essential. This figure is not very informative
except for the fact that the counting process is well
fitted by a simple Poisson process. Put from the
viewpoint of hazard evaluation we are interested not
only in the number of future events but also, and
probably mainly, in their strength.

If we compare Figure 2 with Figure 3, it can be
seen, that marking of the process is an useful tool to
extract more information from the data about the
earthquake process, as the marked process shows
deviation from randomness, which should further be
studied and interpreted.
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FIG. 7. Cumulative number of events (solid line) and
estimated Poisson process (dashed line) for the seismic
zone in Bulgaria , specified in Figure 4 with two main
groups of aftershocks in 1909 and 1928 excluded.
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FIG. 8. Cumulative transformed energy (solid line)
and estimated compound Poisson process (dashed
line), concerning the case in Figure 6.

Non-random behavior, that is, some kind of relation
between occurrence time and released energy is more
expected to be identified for a smaller, more
homogeneous seismic zone. Such a zone has been
chosen in Bulgaria; it has comparatively high seismicity
and several strong events have occurred in it
Geographically, it can be described as a region with
vertices, located by the following latitudes and
longitudes and is shown in Figure 4 (dashed area)

41.5N, 24.0E 43.0N, 28.0E
43.0N, 24.0E 41.5N, 28.0E

Here all the events with magnitudes M,y = 4.0 have
been considered, whose number is N=111, since the
number of events with M, =5.0 is too small.

This, however, as shown in Figure 5, leads to the
fact, that one of our initial conditions is not satisfied
because the examined data set includes aftershocks and
the distribution of events in time is not simple
Poissonian.

As said before, for this case it would be better to use
formula (5) and (6), because they consider the case of
an inhomogeneous compound Poisson process. But here
A=A(t) is not known and only some general features of
the seismic process in the zone will be discussed.

Another conclusion, drawn from Figure 6 is that for
a small seismic zone, where several strong events have
occurred in a short time interval, the mark, defined by
formula (8), is not quite suitable. That is because the
energy of the weakest event is not comparable with the
total energy released in the highly active period.

Both figures hint a peculiar feature of the seismic
process in the investigated zone. Excluding two quite
short periods (each about one year) characterized by a
particular increase of both energy release and number
of events, for the rest of the time period, spanned by
the catalog, the process seems to be quite near a
stationary one.

To check that, both groups of earthquakes (including
main shocks) have been removed and Figures 7 and 8
reflect the seismic process for the remaining part of the
catalog. As can be seen, the assumptions of stationarity
and independence between time and energy are roughly
supported by the data in this case.

So, the seismic regime for the investigated zone is
characterized by short period deviations from
randomness, in which energy release and number of
events (mainly aftershocks) are particularly high. After
them the process comparatively quickly returns to
stationarity.

The problem of a possible relation between
occurrence times and size of earthquakes in the catalog
could be regarded from another point of view, too. The
real seismic process, reflected in the catalog could be
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considered as a composition of processes at different
energy levels.

In the approach, applied above, the observed seismic
process is represented through the cumulative energy
and is compared to a model, the compound Poisson
process. Such an analysis exhibits rather general
characteristics of the earthquake process.

Now we shall try to decompose the process at
different size levels and follow its behavior, modeling
it through a marked Poisson process. Suppose again,
that we have a Poisson process {N(t), t=0} with a rate
A and the time of each event is associated with a
random variable Y, such that Y;, Y, ... could be
considered as independent and sharing the common
distribution function, given by formula (1).

Then the sequence of pairs (T1,Y1), (T2,Y2), ... IS
called marked Poisson process and forms a two-
dimensional, inhomogeneous Poisson point process in
the (t, y) plane (Taylor and Karlin, 1984). The mean
number of points in set A of the (t, y) plane is given by

U(A) = J’ J Ag(y)dtdy (10)

Now if we get back to the initial assumptions of
stationarity in time and independence of the mark from
the occurrence time, we can use the marked point
process, presented by formula (10) as a model process,
embodying our assumptions. It then gives the expected
number of events for each region Aj in the plane (t, y),
to which real data could be compared.

Misg Lisg

u(Aij) = [J)\g (m)dtdm = I{ {[/\dt}dm (11)

By m here we denote the magnitude of an event,
which has been used as a marking parameter in this
case. It is known empirically that the magnitudes
follow roughly an exponential distribution

Pr(M >m) =exp(-m) (12)
Then g(m) could be expressed by
g(m) = Bexp(-Bm)/[exp(-BM ) —exp(-BM )] (13)

where M. and My are the lower and upper cut-off
limits of the magnitudes considered. So, for (A;) we
obtain

m

HOA) = At ~t) [{BeXp(-Bm) [exp(-BM ) ~exp(-BM ) T)dm = (14)
= At ~t)[exp(~Bm ) -~ exp(~pm )]/ C

where by C we have denoted the difference [exp(-BM.)-
- exp(-BMy)].

It might be questionable here, how useful such a
decomposition of the process is from a physical point of
view. Getting back to the idea, that earthquake
occurrences in a seismic zone reflect some more general

tectonic process, it could be reasonable to assume that
seismic energy release at different levels is interrelated.
Up to now, however, excluding clustered events, there
are no dependencies, identified between events with
different magnitudes in a seismic zone.

What is more, speaking in terms of a seismic cycle
(Sobolev, 1995), there are some results from laboratory
experiments concerning rock failure, according to
which energy release differs in time for different levels.
There are also some results, showing the existence of a
quiescence period before strong earthquakes (Mogi,
1968; Fedotov, 1968). They point out, that this
quiescence is connected with background seismicity of
2 to 3 units weaker than the impending earthquake,
speaking in terms of magnitude.

That explains why modeling of the seismic process
by a marked point process and its decomposition could
turn out to be a useful approach. This methodology has
again been tested on a sample of the Balkan catalog,
containing earthquakes with M, > 5.0 and deprived of
aftershocks. The 3 parameter has been estimated using
a maximum likelihood procedure which has yielded
B=2.19.

The results are plotted in Figure 9. Here, four
magnitude intervals are considered and the time interval
chosen is three years. The magnitude ranges were
chosen so, that we could obtain sufficient number of
cases for each cell in the (t, m) plane. The curves
represent the difference between the real and expected
frequency. The occurrence times of strong events with
M.y =7.0 are also shown.

As can be seen, the processes at different energy
levels are similar and the marked point process roughly
fits the data. There are some peculiarities, however,
pointed out by Figure 9. For the magnitude range 5.0 -
5.1 we have an exceedance of the real frequencies
compared to the expected ones (nearly all the plotted
values are positive); this fact could be due to an
underestimate of 3.

Some long-term trends of the 5.0 - 5.1 level can
also be identified. These trends and, more specifically,
the minimum in the 5.0 - 5.1 curve could be linked to
the lack of events with My = 7.0 in that period. This
result shows, that marking of the process could
successfully be applied to identify quiescence periods
before strong events.

Of course, we understand, that the possible
interpretations of these results are quite general and
this method could be much more useful if applied to a
smaller, more homogeneous seismic zone. This,
however, is not feasible because the model would
require larger samples than the available ones in such
zones.
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(AT,AM) MODEL

We suggest another approach to the problem of
identifying possible relationships between occurrence
times and earthquake magnitudes. If we consider the
differences between the magnitudes of subsequent
earthquakes and the corresponding interoccurrence
times, we could incorporate their independence in a
model and check how well it fits the data.

Let us have a sequence of N+1 events. From this
sequence we obtain N differences AM between subsequent
magnitudes and N corresponding interoccurrence times
AT. Assuming the number of occurrences in time follows
the Poisson distribution and AT and AM are independent
each other, we can obtain their joint distribution and
use it as model of our data.

F(t,n) =Pr(AT <7,AM <n) =Pr(AT <1)Pr(AM <n) (15)

What we need, to obtain the explicit form of formula
(15) are the distribution functions of AM and AT. The
exponential distribution of AT follows easily from the
Poisson process assumption, whereas we could develop
the distribution function of AM, basing on the
recurrence law and the general assumption that main
shocks have independent magnitudes.

If we denote

Z=M;-Mi1=Y -X i=2,3,....,N+1

following formula (13), then we reduce the problem to
finding the distribution of the difference of two
independent, identically distributed random variables
(Blom, 1989) with

g(x) =Bexp(-Bx)/C

and

XOA=[M_,M,,]

Z=Y-X

F(z)=Pr(z<z) :IJ f (x, y)dxdy :IEJ’g(x)g(y)dxdy (16)

ZOM -M,; M, -M ]

where by C we have again denoted [exp(-BM.) -

- exp(-BMy)] and by B={(x,y)UAXAy-x<z}
We have solved the problem in two phases;

(l) zZ D[ML - MH, 0]
B={(x,y): x J[M_-z,My], yLIM,, z+x]}

I:(Z)=:|E_[

= {0.5exp[-B2M. - 2)] - exp[-B(My + M)] +
+ 0.5exp[-B(2My + 2)]}/C?

Z+X

Bep(=By) 4 1 BeD(=BX) | _
7 ¢

(17a)

(i) z [0, My - M(]
B={(x,y): x J[M,, My - 2], y[[z+x, My]}

F(z)=1-Pr(Z >z2) =1—IJg(x)g(y)dxdy
_, M Bexp(=By) - Bexp(=BX)
=1 J’L [ZL c dy] c d> (17h)

= 1-{0.5exp[-B(2M + z)] + 0.5exp[-B(2My - 2)] -
- exp[-B2M. + My)]}/C

The obtained distribution function and its density are
represented in Figure 10. We can now get back to formula
(15) and, substitute the probability of AT by an appro-
priate exponential distribution and the probability of AM
by egs. 17a-b. In this way we have specified the joint
distribution of a model of the magnitude difference and
the interevent time of subsequent events. We then com-
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pared this model with real data. In Figure 11 we have
parted the (AT, AM) plane into cells and there we have
plotted the normalized (divided to the number of all
cases) differences between real and model frequencies
for each cell. The size of the cells has again been
chosen so, that the number of observations in each cell
is not too small.

As we have not done any specific alternative
hypothesis to the null hypothesis of independence of
AT, AM (see eq.15), we have used the [J * - test to
verify the goodness of fit of our model to the data. The
test rejects Ho with p=0.01 significance level, hence
the independence model does not show a good fit to
the data.
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FIG. 10. a) Density function of magnitude difference AM = M; - M;_1; b) Distribution function of AM = M; - M4
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FIG. 11. Differences between real and model frequencies
for cells in the AT, AM plane for the Balkan catalog,
MLH > 5.0 (NF - expected, N - real). Model distribution
is calculated on the base of eg. 15 (see in text) in which
AT follows an exponential distribution and AM follows
the distribution given by egs.17a-b

It can be seen, that there are some essential
discrepancies between the observed data set and both
univariate distributions of AM and AT, which points to
deviations from our assumptions of independence
between subsequent magnitudes and of Poisson
occurrences in time. The exceedance of real frequencies
for nearly all the short intertime cells can be connected
to the existence of grouping of main shocks. Similar
results for this set of data have earlier been obtained in
(Gospodinov, 1990).

CONCLUSIONS

Our purpose in this study has been to verify the
applicability of some marked point processes as
models of our data, so as to obtain more information
about possible relations between occurrence times of
earthquakes and their sizes.

Two stationary marked Poisson processes have
been applied to analyse catalog data : a compound
Poisson process has been used to model the behavior
of the cumulative energy release and a marked Poisson
process - to model the behavior of the magnitude at
different levels.

Both of them imply assumptions of independence
between the mark realizations and independence of the
mark from the occurrence time. These assumptions are
very restrictive, but in the case of main shocks they
seem to be natural.

Another model has been developed to consider the
joint distribution of the interoccurrence times and of
the corresponding magnitudes.

The results, obtained by the marked Poisson process
model (AT, AM), point out the existence of some
deviation from the assumption of independence between
mark and occurrence time. A very large portion of
energy release could possibly lead to a comparatively
long period of low energy release rate. An effect of
main shock grouping has also been identified, which,
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in our opinion, deserves special attention, as it is quite
important for seismic risk assessment.

The application of marked point processes to study
the earthquake process from the viewpoint of possible
occurrence time - size of an event relation, has revealed
some peculiar features :

(i) the first of them is connected with the mark itself;
on one hand the usual way of estimating the size of an
event by its magnitude is not suitable for a mark-
accumulator process and, on the other hand, the energy
has a too broad range, which leads to some computational
difficulties and problems in the graphical representation,
too;

(if) addition of a mark to the occurrence time
process leads to an augmentation of sample size
needed to get reliable results. That causes some
difficulties in the use of marked point processes for
small, more homogeneous seismic zones, to which
they could more successfully be applied.

Comparing the stochastic processes we applied to
model seismic catalog data - simple Poisson process,
marked Poisson process and compound Poisson
process, we could infer the following: simple Poisson
process is the classical model of main shock
occurrences when only temporal behavior is studied
and it is not adequate if we want to incorporate more
information about the seismic process. For that
purpose the compound Poisson process is more
suitable. By definition this process could be used for
parameters (marks) of earthquake occurrence for
which their cumulative value is physically defined (as
energy). Finally if we want to decompose the process
of earthquake occurrence at different levels of the
studied parameter (mark), a marked Poisson process
should be the chosen to model our data.

On the whole, marking of the seismic process has
turned out to be an useful tool for the cases
considered; it has enabled us to get more information
about the process from physical point of view,
information which could lead us to develop an
enriched model afterwards.
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